Electrical Circuits (2)

Lecture 8

Transient Analysis Part(2)

Dr.Eng. Basem ElHalawany

Second-Order RLC Transient (Step Response)

$>$ The Switch " S " is closed at $\mathrm{t}=0$
$>$ Applying KVL will produce the following Integro-Differential equation:

$$
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t=V
$$

$>$ Differentiating, we obtain

$$
L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=0 \quad \text { or } \quad\left(D^{2}+\frac{R}{L} D+\frac{1}{L C}\right) i=0
$$

This second order, linear differential equation is of the homogeneous type with a particular solution of zero.
\checkmark The complementary function can be one of three different types according to the roots of the auxiliary equation which_depends upon the relative magnitudes of R, L and C.

$$
m^{2}+\frac{R}{L} m+\frac{1}{L C}=0
$$

Electrical Circuits (2) - Basem ElHalawany

Second-Order RLC Transient (Step Response)

We can Rewrite the auxiliary equation as:

$$
m^{2}+\frac{R}{L} m+\frac{1}{L C}=0
$$

$$
m^{2}+2 \zeta \omega_{0} m+\omega_{0}^{2}=0
$$

ζ : expontial dampling ratio
ω_{0} : undamped natural frequency

$$
\left\{\begin{array}{l}
\frac{R}{L}=2 \zeta \omega_{0} \\
\frac{1}{\sqrt{L C}}=\omega_{0}^{2}
\end{array}\right.
$$

$>$ The roots of the equation (or natural frequencies):

$$
\left\{\begin{array}{l}
m_{1}=-\zeta \omega_{0}+\omega_{0} \sqrt{\zeta^{2}-1} \\
m_{2}=-\zeta \omega_{0}-\omega_{0} \sqrt{\zeta^{2}-1}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
m_{1}=-\frac{R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}} \\
m 2=-\frac{R}{2 L}-\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
m_{1}=-\sigma+\sqrt{\sigma^{2}-\omega_{0}} \\
m_{2}=-\sigma-\sqrt{\sigma^{2}-\omega_{0}}
\end{array}\right.
$$

Second-Order RLC Transient (Step Response)

Case 1: Overdamped, $\quad \zeta>1$

$$
\begin{aligned}
& \frac{\mathrm{R}}{2 \mathrm{~L}}>\frac{1}{\sqrt{L C}} \\
& \sigma^{2}>\omega_{o}{ }^{2}
\end{aligned}
$$

$\Rightarrow m_{1}, m_{2}$ are real and unequal

$$
\left\{\begin{array}{l}
m_{1}=-\zeta \omega_{0}+\omega_{0} \sqrt{\zeta^{2}-1} \\
m_{2}=-\zeta \omega_{0}-\omega_{0} \sqrt{\zeta^{2}-1}
\end{array}\right.
$$

Natural response is the sum of two decaying exponentials:

$$
i_{t r}=K_{1} e^{m_{1} t}+K_{2} e^{m_{2} t}
$$

Case 2: Critically damped, $\quad \zeta=1$

$$
\begin{aligned}
& \frac{\mathrm{R}}{2 \mathrm{~L}}=\frac{1}{\sqrt{L C}} \quad \Rightarrow m_{1}, m_{2} \text { are real and equal. } \\
& \sigma^{2}=\omega_{o}{ }^{2}
\end{aligned} \quad m_{1}=m_{2}=-\omega_{0}
$$

$$
x_{c}(t)=e^{m_{1} t}\left(B_{1}+B_{2} t\right)
$$

Use the initial conditions to get the constants

Usually it is reduced to:

$$
x_{c}(t)=B . t . e^{m_{1} t}
$$

Second-Order RLC Transient (Step Response)

Case 3: Underdamped,

$$
\begin{array}{ll}
\zeta<1 \\
\frac{\mathrm{R}}{2 \mathrm{~L}}<\frac{1}{\sqrt{L C}} \\
\sigma^{2}<\omega_{o}^{2}
\end{array} \quad \Rightarrow m_{1}, m_{2} \text { are complex and conjugate. }
$$

Natural response is an exponentially damped oscillatory response:

$$
i_{t r}=e^{-\sigma t}\left\{A_{1} \cos \left(\omega_{d} t\right)+A_{2} \sin \left(\omega_{d} t\right)\right\}
$$

\checkmark The current in all cases contains the exponential decaying factor (damping factor) assuring that the final value is zero
\checkmark In other words, assuring that the complementary function decays in a relatively short time.

Alternating Current Transients

RL Sinusoidal Transient

$$
\begin{gathered}
R i+L \frac{d i}{d t}=V_{\max } \sin (\omega t+\phi) \\
\left(D+\frac{R}{L}\right) i=\frac{V_{\max }}{L} \sin (\omega t+\phi)
\end{gathered}
$$

1. Complementary (Transient) Solution is the solution of the homogeneous $1^{\text {st }}$ order DE

The same as before, The auxiliary equation is : $\quad m+\frac{R}{L}=0$
The complementary function is $i_{c}=c e^{-(R / L) t}$
2. Particular (Steady-State) Solution

The steady-state value of the current for ac source is :

$$
I_{s s}=\frac{V_{\max }}{\sqrt{X_{L}{ }^{2}+R^{2}}} \operatorname{Sin}\left(w t+\phi-\tan ^{-1}(\omega L / R)\right)
$$

Electrical Circuits (2) - Basem ElHalawany

Alternating Current Transients

RL Sinusoidal Transient

The complete solution is

$$
i=i_{c}+i_{p}=c e^{-(R / L) t}+\frac{V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\omega t+\phi-\tan ^{-1} \omega L / R\right)
$$

Use the initial condition to find the value of c

$$
\begin{aligned}
& i_{0}= 0=c(1)+\frac{V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\phi-\tan ^{-1} \omega L / R\right) \\
& c=\frac{-V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\phi-\tan ^{-1} \omega L / R\right)
\end{aligned}
$$

Substituting by the constant values, we get:

$$
i=e^{-(R / L) t}\left[\frac{-V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\phi-\tan ^{-1}{ }_{\omega} L / R\right)\right]+\frac{V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\omega t+\phi-\tan ^{-1}{ }_{\omega} L / R\right)
$$

Alternating Current Transients

RC Sinusoidal Transient

$$
\begin{array}{r}
i=e^{-t / R C}\left[\frac{V_{\max }}{R} \sin \phi-\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\phi+\tan ^{-1} 1 / \omega C R\right)\right] \\
+\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\omega t+\phi+\tan ^{-1} 1 / \omega C R\right)
\end{array}
$$

Alternating Current Transients

RLC Sinusoidal Transient
> Particular (Steady-State) Solution

$i_{p}=\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C-\omega L)^{2}}} \sin \left(\omega t+\phi+\tan ^{-1} \frac{(1 / \omega C-\omega L)}{R}\right)$
> Complementary(Transient) Solution
The complementary function is identical to that of the DC series RLC circuit examined previously where the result was overdamped, critically damped or oscillatory, depending upon R, L and C.

For the complete analysis
Check Chapter 16 Schaum Series (Old version)

Transient Analysis using Laplace Transform

> Laplace transform is considered one of the most important tools in Electrical Engineering
> It can be used for:
\checkmark Solving differential equations
\checkmark Circuit analysis (Transient and general circuit analysis)
\checkmark Digital Signal processing in Communications and \checkmark Digital Control

Transient Analysis using Laplace Transform

Circuit Elements in the "S" Domain

Electrical Circuits (2) - Basem ElHalawany

Circuit Elements in the " S " Domain

Circuit Element Modeling

The method used so far follows the steps:

1. Write the differential equation model
2. Use Laplace transform to convert the model to an algebraic form

1.0 Resistance

Resistor

Electrical Circuits (2) - Basem ElHalawany

Circuit Elements in the " S " Domain

2.0 Inductor

$v(t)=L \frac{d i}{d t}(t)$
\Rightarrow

$V(s)=L s I(s)-L i(0)$
$\Rightarrow \quad I(s)=\frac{V(s)}{L s}+\frac{i(0)}{s}$

Electrical Circuits (2) - Basem ElHalawany

Circuit Elements in the " S " Domain

3.0 Capacitor

$v_{c}(t)=\frac{1}{C} \int_{0}^{t i(t) d t+v_{c}(0)}$
$V(s)=\frac{1}{C s} I(s)+\frac{v(0)}{s}$
$I(s)=C s V(s)-C v(0)$

First-Order RL Transient (Step-Response)

> The switch " S " is closed at $\mathrm{t}=0$ to allow the step voltage to excite the circuit
> Apply KVL to the circuit in figure:

$$
R i+L \frac{d i}{d t}=V
$$

> Apply Laplace Transform on both sides

$$
\begin{gathered}
R . I(s)+L[s . I(s)-i(0)]=\frac{V}{s} \\
\mathrm{i}(0)=0 \text { >> initial value of the current at } \mathrm{t}=0
\end{gathered}
$$

$$
\begin{gathered}
I(s) \cdot[R+s L]=\frac{V}{s} \\
I(s)=\frac{V}{s[R+s L]}=\frac{V / L}{s[s+R / L]}
\end{gathered}
$$

> Apply the inverse Laplace Transform technique to get the expression of the current $\mathrm{i}(\mathrm{t})$

First-Order RL Transient (Step-Response)

> Use the partial fraction technique

$$
I(s)=\frac{V / L}{s[s+R / L]}=\frac{A_{1}}{s}+\frac{A_{2}}{s+R / L}
$$

> Multiply both sides by

$$
s .(s+R / L)
$$

$$
\begin{aligned}
& V / L=A_{1} \cdot(s+R / L)+A_{2} \cdot s \\
& \ldots \ldots=\left(A_{1}+A_{2}\right) \cdot s+A_{1} \cdot \frac{R}{L} \\
& A_{1}=V / R \quad A_{2}=-V / R
\end{aligned}
$$

$>$ So, the current in s-domain is given by:
> Apply the inverse Laplace transform :

$$
\begin{aligned}
I(s) & =\frac{V}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right) \\
i(t) & =\frac{V}{R}\left(1-e^{-\frac{R}{L} t}\right) ; t>0
\end{aligned}
$$

First-Order RL Transient (Discharge)

> The RL circuit shown in Figure contains an initial current of (V/R)
$>$ The Switch " S " is moved to position" 2 " at $\mathrm{t}=0$

$$
L \frac{d i}{d t}+R i=0
$$

> Apply Laplace Transform on both sides

$$
R . I(s)+L[s . I(s)-i(0)]=0
$$

$$
i(0)=V / R \gg \text { initial value of the current at } t=0
$$

$$
R . I(s)+L[s . I(s)-V / R]=0
$$

$$
I(s)=\frac{V / R}{[s+R / L]}
$$

> Apply the inverse Laplace transform :

$$
i(t)=\frac{V}{R} \cdot e^{-\frac{R}{L} t}=I_{o} . e^{-\frac{R}{L} t} ; t>0
$$

$>$ The same as before

First-Order RC Transient (Step-Response)

- Assume the switch S is closed at $\mathrm{t}=0$
- Apply KVL to the series RC circuit shown:

$$
\left[\frac{1}{c} \int i(t) \cdot d t+v_{c}(0)\right]+R \cdot i(t)=V
$$

> Apply Laplace Transform on both sides

$$
\left[\frac{I(s)}{c s}+\frac{v_{c}(0)}{s}\right]+R \cdot I(s)=\frac{V}{s}
$$

$\mathrm{V}_{\mathrm{c}}(0)=0 \quad \gg$ initial value of the voltage at $\mathrm{t}=0$

$$
I(s) \cdot\left[R+\frac{1}{c s}\right]=\frac{V}{s}
$$

$$
I(s)=\frac{1 / s}{[R+1 / c s]}=\frac{1 / R}{[s+1 / c R]}
$$

$>$ Apply the inverse Laplace Transform technique to get the expression of the current $\mathrm{i}(\mathrm{t})$

$$
i(t)=\frac{V}{R} e^{-\frac{1}{R C} t} ; t>0
$$

The same as last lecture

Second-Order RLC Transient (Step Response)

$>$ The Switch " S " is closed at $\mathrm{t}=0$
$>$ Applying KVL will produce the following Integro-Differential equation:

$$
\left[\frac{1}{c} \int i(t) \cdot d t+v_{c}(0)\right]+L \frac{d i(t)}{d t}+R \cdot i(t)=V
$$

> Apply Laplace Transform on both sides

$$
\begin{gathered}
{\left[\frac{I(s)}{c s}+\frac{v_{c}(0)}{s}\right]+L \cdot[s \cdot I(s)-i(0)]+R \cdot I(s)=\frac{V}{s}} \\
I(s)=\frac{V / s}{[R+s L+1 / c s]}=\frac{V / L}{\left[s^{2}+s \cdot(R / L)+1 / L c\right]}
\end{gathered}
$$

Assume:

$\mathrm{V}_{\mathrm{c}}(0)=0 \& i(0)=0$
$>$ To convert this to time-domain, it will depend on the roots of the denominator which could be expressed as:
(s-S1).(s-S2) >>>>> similar to last lecture (m-m1).(m-m2)

$$
m^{2}+\frac{R}{L} m+\frac{1}{L C}=0
$$

Second-Order RLC Transient (Step Response)

$$
S_{1,2}=\frac{-R}{2 L} \mp \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

$$
S_{1,2}=-\zeta \omega_{0} \mp \omega_{0} \sqrt{\zeta^{2}-1}
$$

ζ : expontial dampling ratio ω_{0} : undamped natural frequency

$$
S_{1,2}=-\sigma \mp \sqrt{\sigma^{2}-\omega_{0}^{2}}
$$

> Apply Partial Fraction:

$$
I(s)=\frac{V / L}{\left[s^{2}+s \cdot(R / L)+1 / L c\right]}=\frac{A}{S-S_{1}}+\frac{B}{S-S_{2}}
$$

$$
\begin{aligned}
& A=\left.\left(S-S_{1}\right) \cdot I(s)\right|_{s=s_{1}}=\frac{V}{2 L \cdot \omega_{o} \sqrt{\zeta^{2}-1}} \\
& B=\left.\left(S-S_{2}\right) \cdot I(s)\right|_{s=s_{2}}=\frac{-V}{2 L \cdot \omega_{o} \sqrt{\zeta^{2}-1}}=-A
\end{aligned}
$$

$$
I(s)=\frac{V}{2 L \cdot \omega_{o} \sqrt{\zeta^{2}-1}} \cdot\left[\frac{1}{S-S_{1}}-\frac{1}{S-S_{2}}\right]
$$

Electrical Circuits (2) - Basem ElHalawany

Second-Order RLC Transient (Step Response)

> Apply Partial According to the values of the roots, we have 3 scenarios:

1. Over-damped Case i.e. Two real distinct roots

$$
i(t)=\frac{V}{2 L \cdot \omega_{o} \sqrt{\zeta^{2}-1}} \cdot\left[e^{S_{1} t}-e^{S_{2} t}\right]
$$

1. Critically-damped Case i.e. Two real equal roots $\sigma=\omega_{o}$

$$
S_{1}=S_{2}=-\sigma=\frac{-R}{2 L}
$$

$$
I(s)=\frac{V / L}{\left[s^{2}+s \cdot(R / L)+1 / L c\right]}=\frac{V / L}{\left(S-S_{1}\right)^{2}}=\frac{V / L}{(S+\sigma)^{2}}=\frac{V / L}{\left(S+\omega_{o}\right)^{2}}
$$

Convert by inverse L.T:

$$
\frac{1}{(S+a)^{n}} \Leftrightarrow \frac{t^{n-1}}{(n-1)!} \cdot e^{-a t}
$$

$$
\begin{equation*}
i(t)=\frac{V}{L} . t . e^{S_{1} t}=\frac{V}{L} . t . e^{-\omega_{o} t} \tag{22}
\end{equation*}
$$

Second-Order RLC Transient (Step Response)

3. Under-damped Case i.e. Two Complex-conjugate roots

$$
S_{1,2}=-\sigma \mp \sqrt{\sigma^{2}-\omega_{0}^{2}}=-\sigma \mp j \omega_{d}
$$

$i(t)=e^{\sigma . t}\left[A_{1} \cos \left(\omega_{d} t\right)+A_{2} \sin \left(\omega_{d} t\right)\right]$
$\ldots . .=A e^{\sigma . t}\left[\frac{A_{1}}{A} \cos \left(\omega_{d} t\right)+\frac{A_{2}}{A} \sin \left(\omega_{d} t\right)\right]$
$\ldots . .=A e^{\sigma . t}\left[\sin \psi \cdot \cos \left(\omega_{d} t\right)+\cos \psi \cdot \sin \left(\omega_{d} t\right)\right]$
$\ldots . .=A e^{\sigma . t} \sin \left(\omega_{d} t+\psi\right)$
A

RL Sinusoidal Transient

$R=5$ ohms, $L=0.01 \mathrm{H}, \mathrm{Vm}=100$ volts, $\phi=0, \omega=500$

$$
R i+L \frac{d i}{d t}=V_{\max } \sin (\omega t+\phi)
$$

> Apply Laplace Transform on both sides

$$
R \cdot I(s)+L[s \cdot I(s)-i(0)]=100 \frac{\omega}{s^{2}+\omega^{2}}
$$

$$
i(0)=0 \gg \text { initial value of the current at } t=0
$$

$$
I(s) \cdot\left[L\left(s+\frac{R}{L}\right)\right]=100 \frac{\omega}{s^{2}+\omega^{2}}
$$

$$
I(s)=\frac{100 \cdot \omega}{L \cdot\left(s^{2}+\omega^{2}\right) \cdot\left(s+\frac{R}{L}\right)}=\frac{5 \times 10^{6}}{\left(s^{2}+\omega^{2}\right) \cdot(s+500)} \quad \begin{aligned}
& S_{1}=-500 \\
& \\
& S_{2}=-j \omega \\
& S_{3}=j \omega
\end{aligned}
$$

RL Sinusoidal Transient

> Use Partial Fraction:

$$
\begin{aligned}
I(s)=\frac{5 \times 10^{6}}{\left(s^{2}+\omega^{2}\right) \cdot(s+500)} & =\frac{A_{1}}{s-j \omega}+\frac{A_{2}}{s+j \omega}+\frac{A_{3}}{s+500} \\
\text { OR } & =\frac{B_{1} s+B_{2}}{s^{2}+\omega^{2}}+\frac{A_{3}}{s+500}
\end{aligned}
$$

Compare to find the constants:

$$
I(s)=\frac{10[-s+500]}{s^{2}+\omega^{2}}+\frac{10}{s+500}=10 \cdot \frac{500}{s^{2}+500^{2}}-10 \cdot \frac{s}{s^{2}+500^{2}}+\frac{10}{s+500}
$$

> Use Inverse L.T. $i(t)=10 \cdot \sin (500 t)-10 \cdot \cos (500 t)+10 . e^{-500 t}$

$$
\begin{align*}
& i(t)=10 \cdot[\sin (500 t)-\cos (500 t)]+10 \cdot e^{-500 t} \\
& A=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
& \psi=\tan ^{-1}(1 /-\mathbf{1})=45^{\circ} \\
& i(t)=10 \cdot \sqrt{2} \cdot \sin \left(500 t-45^{\circ}\right)+10 \cdot e^{-500 t}=I_{s . s}+I_{t r} \tag{25}
\end{align*}
$$

Examples

The capacitor of Figure 11-24(a) is uncharged. The switch is moved to position 1 for 10 ms , then to position 2 , where it remains.

(b) Charging circuit
$R_{\mathrm{T}_{c}}=R_{1}+R_{2}$

(c) Discharging circuit $V_{0}=100 \mathrm{~V}$ at $t=0 \mathrm{~s}$

$$
\tau_{C}=\left(R_{1}+R_{2}\right) C=(1 \mathrm{k} \Omega)(2 \mu \mathrm{~F})=2.0 \mathrm{~ms}
$$

a. $v_{C}=E\left(1-e^{-t / \tau_{c}}\right)=100\left(1-e^{-500 t}\right) \mathrm{V}$
b. $i_{C}=\frac{E}{R_{\mathrm{T}_{C}}} e^{-t / \tau_{c}}=\frac{100}{1000} e^{-500 t}=100 e^{-500 t} \mathrm{~mA}$

$$
\begin{aligned}
& \tau_{d}=(500 \Omega)(2 \mu \mathrm{~F})=1.0 \mathrm{~ms} \\
& v_{C}=V_{0} e^{-t / \tau_{d}}=100 e^{-1000 t} \mathrm{~V}
\end{aligned}
$$

Note that discharge is more rapid than charge since $\tau_{d}<\tau_{c}$.

$$
i_{C}=-\frac{V_{0}}{R_{2}+R_{3}} e^{-t / \tau_{d}}=-\frac{100}{500} e^{-1000 t}=-200 e^{-1000 t} \mathrm{~mA}
$$

