Electrical Circuits (2)

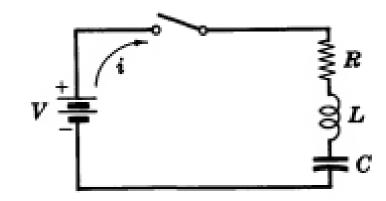
Lecture 8 Transient Analysis Part(2)

Dr.Eng. Basem ElHalawany

- The Switch "S" is closed at t=0
- Applying KVL will produce the following Integro-Differential equation:

$$Ri + L\frac{di}{dt} + \frac{1}{C}\int i\,dt = V$$

Differentiating, we obtain



$$L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{i}{C} = 0 \quad \text{or} \quad \left(D^{2} + \frac{R}{L}D + \frac{1}{LC}\right)i = 0$$

This second order, linear differential equation is of the homogeneous type with a particular solution of zero.

The complementary function can be one of <u>three different types</u> according to the roots of the auxiliary equation which depends upon the relative magnitudes of R, L and C.

$$m^2 + \frac{R}{L}m + \frac{1}{LC} = 0$$

We can Rewrite the auxiliary equation as:

$$n^2 + 2\zeta\omega_0 m + \omega_0^2 = 0$$

- ζ : expontial dampling ratio
- ω_0 : undamped natural frequency

> The roots of the equation (or natural frequencies):

$$\begin{cases} m_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ m_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}$$

$$\begin{cases} m_1 = -\frac{R}{2L} + \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} \\ m_2 = -\frac{R}{2L} - \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} \end{cases}$$

 $m^{2} + \frac{R}{I}m + \frac{1}{IC} = 0$

 $\begin{cases} \frac{R}{L} = 2\zeta\omega_0 \\ \frac{1}{\sqrt{LC}} = \omega_0^2 \end{cases}$

$$\begin{cases} m_1 = -\omega + \sqrt{\omega} - \omega_0 \\ m_2 = -\sigma - \sqrt{\sigma^2 - \omega_0} \end{cases}$$

__2

Case 1: Overdamped,

 $\frac{R}{2L} > \frac{1}{\sqrt{LC}}$ $\sigma^2 > \omega_0^2$

 $\zeta > 1$

 $\Rightarrow m_1, m_2$ are real and unequal

$$\begin{cases} m_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ m_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}$$

Natural response is the sum of two decaying exponentials:

 $\mathcal{L}=1$

$$\dot{k}_{tr} = K_1 e^{m_1 t} + K_2 e^{m_2 t}$$

Case 2: Critically damped,

$$\frac{R}{2L} = \frac{1}{\sqrt{LC}}$$
$$\sigma^2 = \omega_0^2$$

$$x_{c}(t) = e^{m_{1}t} (B_{1} + B_{2}t)$$

Use the initial conditions to get the constants

 $\Rightarrow m_1, m_2$ are real and equal.

 $m_1 = m_2 = -\omega_0$

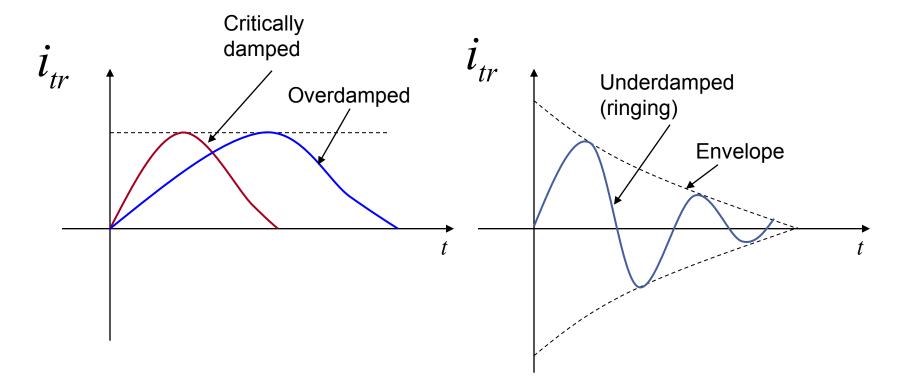
Usually it is reduced to:

$$x_c(t) = B.t.e^{m_1 t}$$

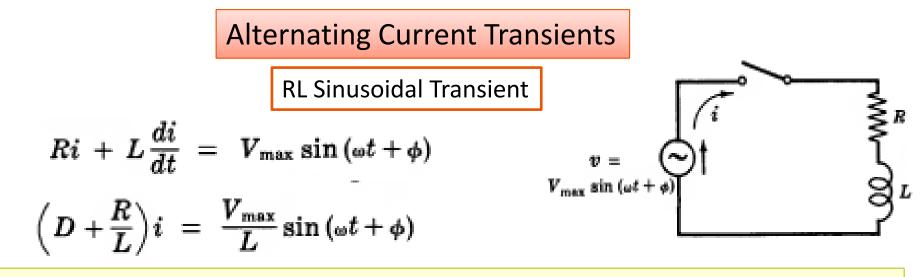
Case 3: Underdamped,

Natural response is an exponentially damped oscillatory response:

$$i_{tr} = e^{-\sigma t} \{A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t)\}$$



- ✓ The current in all cases contains the exponential decaying factor (damping factor) assuring that the final value is zero
- ✓ In other words, assuring that the complementary function decays in a relatively short time.



1. Complementary (Transient) Solution is the solution of the homogeneous 1st order DE

The same as before, The auxiliary equation is :

$$m + \frac{R}{L} = 0$$

The complementary function is $i_c = ce^{-(R/L)t}$

2. Particular (Steady-State) Solution

The steady-state value of the current for ac source is :

$$I_{ss} = \frac{V_{max}}{\sqrt{X_L^2 + R^2}} Sin(wt + \phi - \tan^{-1}(\omega L / R))$$

Alternating Current Transients

RL Sinusoidal Transient

The complete solution is

$$i = i_c + i_p = ce^{-(R/L)t} + \frac{V_{\max}}{\sqrt{R^2 + \omega^2 L^2}} \sin(\omega t + \phi - \tan^{-1}\omega L/R)$$

Use the initial condition to find the value of c

$$i_0 = 0 = c(1) + \frac{V_{\max}}{\sqrt{R^2 + \omega^2 L^2}} \sin(\phi - \tan^{-1}\omega L/R)$$

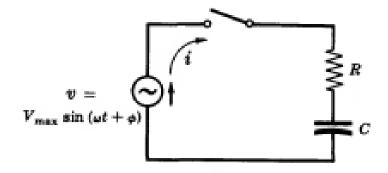
$$c = \frac{-V_{\max}}{\sqrt{R^2 + \omega^2 L^2}} \sin\left(\phi - \tan^{-1}\omega L/R\right)$$

Substituting by the constant values, we get:

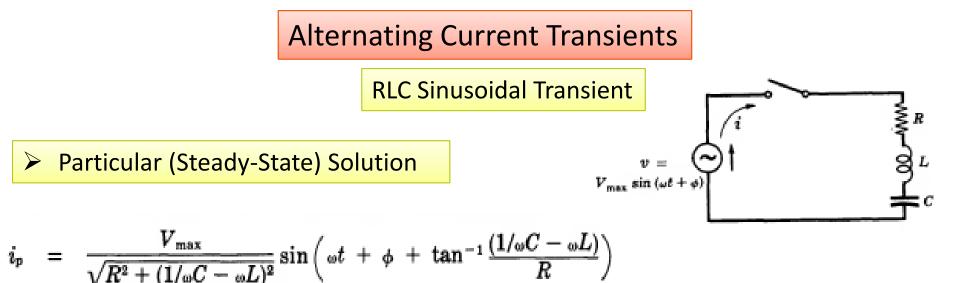
$$i = e^{-(R/L)t} \left[\frac{-V_{\max}}{\sqrt{R^2 + \omega^2 L^2}} \sin(\phi - \tan^{-1}\omega L/R) \right] + \frac{V_{\max}}{\sqrt{R^2 + \omega^2 L^2}} \sin(\omega t + \phi - \tan^{-1}\omega L/R)$$
(5)

Alternating Current Transients

RC Sinusoidal Transient



$$i = e^{-t/RC} \left[\frac{V_{\max}}{R} \sin \phi - \frac{V_{\max}}{\sqrt{R^2 + (1/\omega C)^2}} \sin (\phi + \tan^{-1} 1/\omega CR) \right] + \frac{V_{\max}}{\sqrt{R^2 + (1/\omega C)^2}} \sin (\omega t + \phi + \tan^{-1} 1/\omega CR)$$



Complementary(Transient) Solution

The complementary function is identical to that of the DC series RLC circuit examined previously where the result was overdamped, critically damped or oscillatory, depending upon R, L and C.

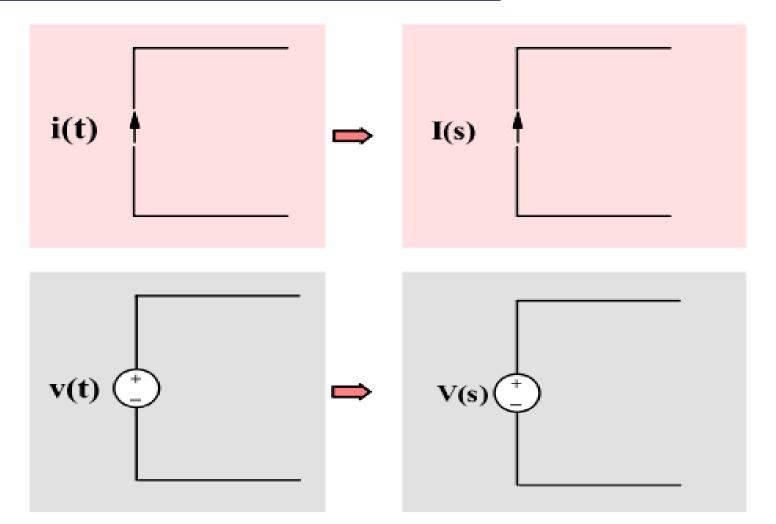
For the complete analysis Check Chapter 16 Schaum Series (Old version)

Transient Analysis using Laplace Transform

- Laplace transform is considered one of the most important tools in Electrical Engineering
- It can be used for:
 - ✓ Solving differential equations
 - ✓ Circuit analysis (Transient and general circuit analysis)
 - ✓ Digital Signal processing in Communications and
 - ✓ Digital Control

Transient Analysis using Laplace Transform

Circuit Elements in the "S" Domain



Circuit Elements in the "S" Domain

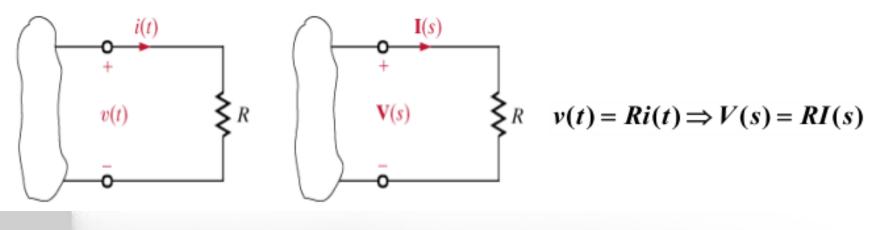
Circuit Element Modeling

The method used so far follows the steps:

- 1. Write the differential equation model
- 2. Use Laplace transform to convert the model to an algebraic form

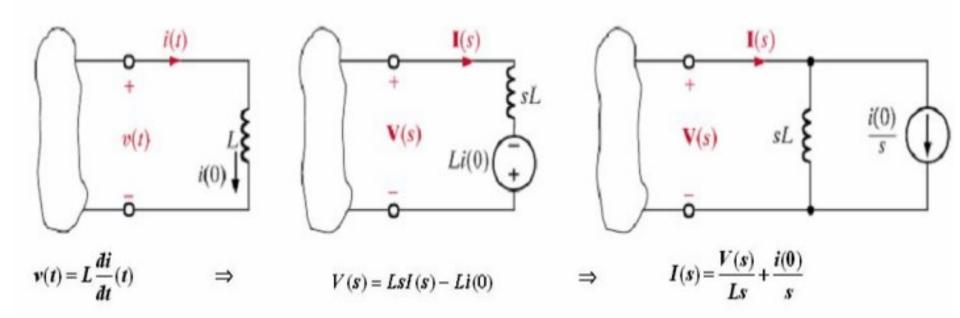
1.0 Resistance

Resistor



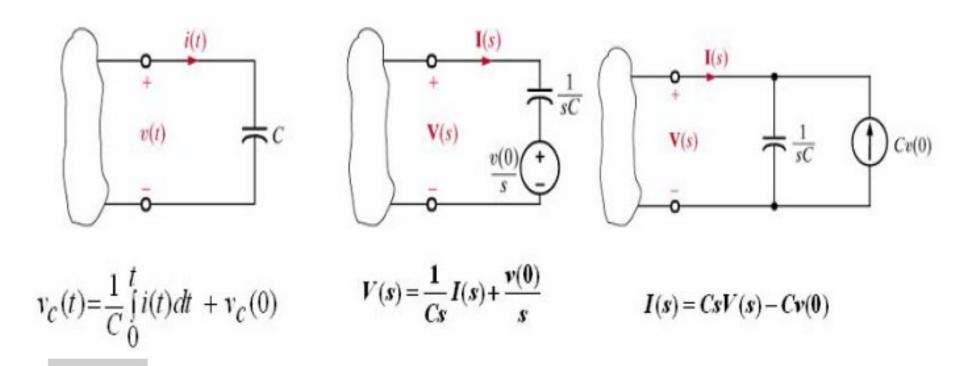
Circuit Elements in the "S" Domain

2.0 Inductor



Circuit Elements in the "S" Domain

3.0 Capacitor



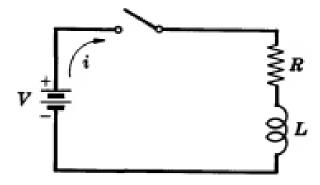
First-Order <u>RL</u> Transient (Step-Response)

The switch "S" is closed at t = 0 to allow the step voltage to excite the circuit
 Apply KVL to the circuit in figure:

$$Ri + L \frac{di}{dt} = V$$

Apply Laplace Transform on both sides

$$R.I(s) + L[s.I(s) - i(0)] = \frac{V}{s}$$

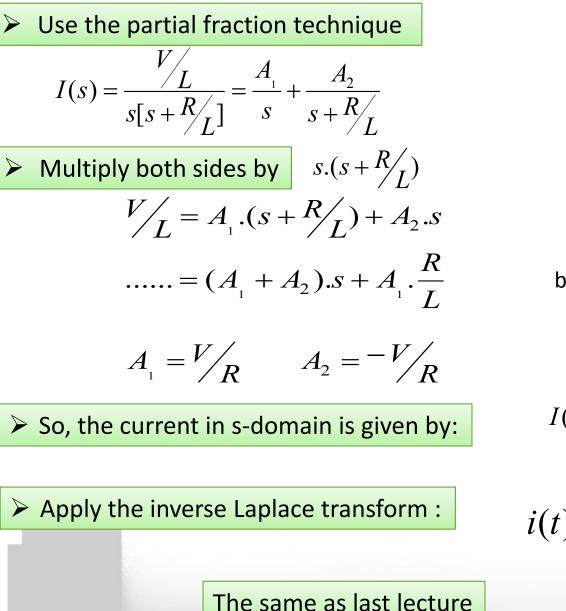


i(0) = 0 >> initial value of the current at t = 0

$$I(s).[R+sL] = \frac{V}{s}$$
$$I(s) = \frac{V}{s[R+sL]} = \frac{\frac{V}{L}}{s[s+\frac{R}{L}]}$$

Apply the inverse Laplace Transform technique to get the expression of the current i(t)

First-Order <u>RL</u> Transient (Step-Response)



$$A_{1} = sI(s)|_{s=0} = \frac{V}{R}$$
$$A_{2} = (s + R/L)I(s)|_{s=-R/L} = -\frac{V}{R}$$

both sides Compare the coefficients

 $I(s) = \frac{V}{R} \left(\frac{1}{s} - \frac{1}{s + \frac{R}{L}}\right)$ $i(t) = \frac{V}{R} \left(1 - e^{-\frac{R}{L}t}\right); t > 0$

17

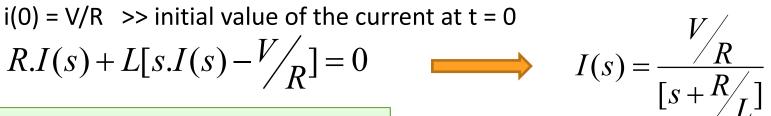
First-Order <u>RL</u> Transient (Discharge)

- The RL circuit shown in Figure contains an initial current of (V/R)
- The Switch "S" is moved to position"2" at t=0

$$L\frac{di}{dt} + Ri = 0$$

Apply Laplace Transform on both sides

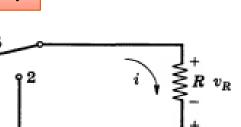
$$R.I(s) + L[s.I(s) - i(0)] = 0$$



> Apply the inverse Laplace transform :

$$i(t) = \frac{V}{R} \cdot e^{-\frac{R}{L}t} = I_o \cdot e^{-\frac{R}{L}t}; t > 0$$





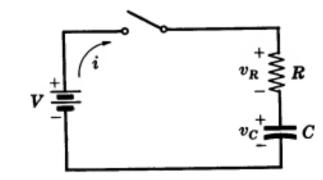
First-Order RC Transient (Step-Response)

- Assume the switch S is closed at t = 0
- Apply KVL to the series RC circuit shown:

$$\frac{1}{c}\int i(t).dt + v_{c}(0)] + R.i(t) = V$$

Apply Laplace Transform on both sides

$$\left[\frac{I(s)}{cs} + \frac{v_c(0)}{s}\right] + R.I(s) = \frac{V}{s}$$



$$V_{c}(0) = 0 \implies \text{initial value of the voltage at t} = 0$$

$$I(s) \cdot \left[R + \frac{1}{cs}\right] = \frac{V}{s} \qquad I(s) = \frac{V/s}{\left[R + \frac{1}{cs}\right]} = \frac{V/R}{\left[s + \frac{1}{cR}\right]}$$

Apply the inverse Laplace Transform technique to get the expression of the current i(t)

$$i(t) = \frac{V}{R}e^{-\frac{1}{RC}t}; t > 0$$

The same as last lecture

The Switch "S" is closed at t=0

Applying KVL will produce the following Integro-Differential equation:

$$\left[\frac{1}{c}\int i(t).dt + v_{c}(0)\right] + L\frac{di(t)}{dt} + R.i(t) = V$$

Apply Laplace Transform on both sides

$$\left[\frac{I(s)}{cs} + \frac{v_c(0)}{s}\right] + L.[s.I(s) - i(0)] + R.I(s) = \frac{V}{s}$$
$$I(s) = \frac{\frac{V}{s}}{[R + sL + \frac{1}{cs}]} = \frac{\frac{V}{L}}{[s^2 + s.(\frac{R}{L}) + \frac{1}{Lc}]}$$

Assume: $V_{c}(0) = 0 \& i(0) = 0$

To convert this to time-domain, it will depend on the roots of the denominator which could be expressed as:

(s-S1).(s-S2) >>>> similar to last lecture (m-m1).(m-m2)

$$m^2 + \frac{R}{L}m + \frac{1}{LC} = 0$$
 20

$$S_{1,2} = \frac{-R}{2L} \mp \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}$$

 ζ : expontial dampling ratio ω_0 : undamped natural frequency

> Apply Partial Fraction:

$$S_{1,2} = -\zeta \omega_0 \mp \omega_0 \sqrt{\zeta^2 - 1}$$

$$S_{1,2} = -\sigma \mp \sqrt{\sigma^2 - \omega_0^2}$$

$$I(s) = \frac{\frac{V/L}{L}}{[s^2 + s.(\frac{R}{L}) + \frac{1}{Lc}]} = \frac{A}{S - S_1} + \frac{B}{S - S_2}$$

$$A = (S - S_1) I(s) |_{s=s_1} = \frac{V}{2L \omega_o \sqrt{\zeta^2 - 1}}$$
$$B = (S - S_2) I(s) |_{s=s_2} = \frac{-V}{2L \omega_o \sqrt{\zeta^2 - 1}} = -A$$

$$I(s) = \frac{V}{2L.\omega_o \sqrt{\zeta^2 - 1}} \cdot \left[\frac{1}{S - S_1} - \frac{1}{S - S_2}\right]$$

- Apply Partial According to the values of the roots, we have 3 scenarios: \geq
- **Over-damped Case** 1.

i.e. Two real distinct roots

$$i(t) = \frac{V}{2L.\omega_o \sqrt{\zeta^2 - 1}} \cdot [e^{S_1 t} - e^{S_2 t}]$$

Critically-damped Case 1. i.e. Two real equal roots $\sigma = \omega_{o}$

$$S_1 = S_2 = -\sigma = \frac{-R}{2L}$$

$$I(s) = \frac{\frac{V/L}{L}}{[s^2 + s.(\frac{R}{L}) + \frac{1}{Lc}]} = \frac{\frac{V/L}{(S - S_1)^2}}{(S - S_1)^2} = \frac{\frac{V/L}{(S + \sigma)^2}}{(S + \sigma)^2} = \frac{\frac{V/L}{(S + \omega_o)^2}}{(S - \omega_o)^2}$$

wert by inverse L.T:
$$\frac{1}{(S + a)^n} \Leftrightarrow \frac{t^{n-1}}{(n-1)!} e^{-at}$$

Convert by inverse L.T:

$$i(t) = \frac{V}{L} .t.e^{S_1 t} = \frac{V}{L} .t.e^{-\omega_o t}$$

22

3. Under-damped Case

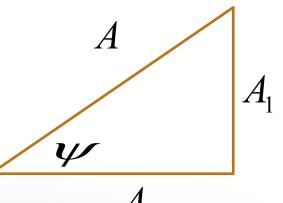
i.e. Two Complex-conjugate roots

$$S_{1,2} = -\sigma \mp \sqrt{\sigma^2 - \omega_0^2} = -\sigma \mp j\omega_d$$

 $i(t) = e^{\sigma t} [A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t)]$ = $A e^{\sigma t} [\frac{A_1}{A} \cos(\omega_d t) + \frac{A_2}{A} \sin(\omega_d t)]$

..... = $Ae^{\sigma t} [\sin \psi . \cos(\omega_d t) + \cos \psi . \sin(\omega_d t)]$

 $\dots = Ae^{\sigma t} \sin(\omega_d t + \psi)$



RL Sinusoidal Transient

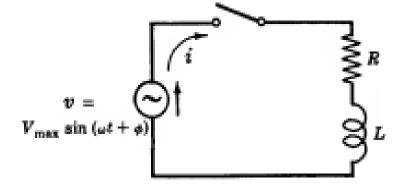
R = 5 ohms, L = 0.01 H, Vm = 100 volts, ϕ = 0, ω = 500

$$Ri + L\frac{di}{dt} = V_{\max}\sin(\omega t + \phi)$$

> Apply Laplace Transform on both sides

$$R.I(s) + L[s.I(s) - i(0)] = 100 \frac{\omega}{s^2 + \omega^2}$$

i(0) = 0 >> initial value of the current at t = 0



$$I(s) = \frac{I(s) [L(s + \frac{R}{L})] = 100 \frac{\omega}{s^2 + \omega^2}}{I(s) = \frac{100 .\omega}{L.(s^2 + \omega^2).(s + \frac{R}{L})} = \frac{5x10^6}{(s^2 + \omega^2).(s + 500)} \qquad S_1 = -500$$

$$S_2 = -j\omega$$

$$S_3 = j\omega$$

RL Sinusoidal Transient

Use Partial Fraction:

$$I(s) = \frac{5x10^{6}}{(s^{2} + \omega^{2}).(s + 500)} = \frac{A_{1}}{s - j\omega} + \frac{A_{2}}{s + j\omega} + \frac{A_{3}}{s + 500}$$

$$= \frac{B_{1}s + B_{2}}{s^{2} + \omega^{2}} + \frac{A_{3}}{s + 500}$$
For the final the constants:

Compare to find the constants:

$$I(s) = \frac{10[-s+500]}{s^2+\omega^2} + \frac{10}{s+500} = 10 \cdot \frac{500}{s^2+500^2} - 10 \cdot \frac{s}{s^2+500^2} + \frac{10}{s+500}$$

> Use Inverse L.T. $i(t) = 10 \cdot \sin(500t) - 10 \cdot \cos(500t) + 10 \cdot e^{-500t}$

$$i(t) = 10.[\sin(500t) - \cos(500t)] + 10.e^{-500t}$$

$$A = \sqrt{1^{2} + (-1)^{2}} = \sqrt{2}$$

$$\Psi = \tan^{-1}(\frac{1}{-1}) = 45^{\circ}$$

$$i(t) = 10.\sqrt{2}.\sin(500t - 45^{\circ}) + 10.e^{-500t} = I_{s.s} + I_{tr}$$
29

