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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 

 The Switch “S” is closed at t=0 
 Applying KVL will produce the following 

Integro-Differential equation: 

 Differentiating, we obtain 

This second order, linear differential equation is of the 
homogeneous type with a particular solution of zero. 
This second order, linear differential equation is of the 
homogeneous type with a particular solution of zero. 

 The complementary function can be one of three different types according to 
the roots of the auxiliary equation which depends upon the relative 
magnitudes of R, L and C. 

 The complementary function can be one of three different types according to 
the roots of the auxiliary equation which depends upon the relative 
magnitudes of R, L and C. 
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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 
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We can Rewrite the auxiliary equation as: 
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 The roots of the  equation (or natural frequencies):  The roots of the  equation (or natural frequencies): 
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Case 1: Overdamped,  Case 1: Overdamped,  
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Natural response is the sum of two decaying exponentials: 
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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 

unequal and real are  , 21 mm

Case 2: Critically damped,  Case 2: Critically damped,  
equal. and real are  , 21 mm
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to get the constants 

Use the initial conditions 

to get the constants 

Usually it is reduced to: Usually it is reduced to: 
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Case 3: Underdamped,  Case 3: Underdamped,  

conjugate. andcomplex  are  , 21 mm

Natural response is an exponentially damped oscillatory response: 
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tri

t t

Critically 

damped 

Overdamped 
Underdamped 

(ringing) 

Envelope 

tri

 The current in all cases contains the exponential decaying factor (damping 
factor)  assuring that the final value is zero 

 In other words, assuring that the complementary function decays in a 
relatively short time.  

 The current in all cases contains the exponential decaying factor (damping 
factor)  assuring that the final value is zero 

 In other words, assuring that the complementary function decays in a 
relatively short time.  
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Alternating Current Transients Alternating Current Transients 

RL Sinusoidal Transient 

1. Complementary  (Transient) Solution is the solution of the homogeneous 1st order DE 1. Complementary  (Transient) Solution is the solution of the homogeneous 1st order DE 

The same as before, The auxiliary  equation is : 0
L

R
m

2. Particular (Steady-State) Solution 2. Particular (Steady-State) Solution 

The steady-state value of the current for ac source is : The steady-state value of the current for ac source is : 
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Alternating Current Transients Alternating Current Transients 

RL Sinusoidal Transient 

Use the initial condition to find the value of c Use the initial condition to find the value of c 

Substituting by the constant values, we get: Substituting by the constant values, we get: 
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Alternating Current Transients Alternating Current Transients 

RC Sinusoidal Transient RC Sinusoidal Transient 
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Alternating Current Transients Alternating Current Transients 

RLC Sinusoidal Transient RLC Sinusoidal Transient 

 Particular (Steady-State) Solution  Particular (Steady-State) Solution 

 Complementary(Transient) Solution  Complementary(Transient) Solution 

The complementary function is identical to that of the DC series RLC 
circuit examined previously where the result was overdamped, critically 

damped or oscillatory, depending upon R, L and C. 

The complementary function is identical to that of the DC series RLC 
circuit examined previously where the result was overdamped, critically 

damped or oscillatory, depending upon R, L and C. 

For the complete analysis  
Check Chapter 16 Schaum Series (Old version) 

For the complete analysis  
Check Chapter 16 Schaum Series (Old version) 
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Transient Analysis using Laplace Transform  Transient Analysis using Laplace Transform  

 Solving differential equations  
 Circuit analysis (Transient and general circuit 

analysis) 
 Digital Signal processing  in Communications and  
 Digital Control 
 

 Laplace transform is considered one of the most important tools in Electrical 
Engineering 

 It can be used for: 

 Laplace transform is considered one of the most important tools in Electrical 
Engineering 

 It can be used for: 
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Transient Analysis using Laplace Transform  Transient Analysis using Laplace Transform  
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 The switch “S” is closed at t = 0 to allow the step voltage to excite the circuit 
 Apply KVL to the circuit in figure: 
 The switch “S” is closed at t = 0 to allow the step voltage to excite the circuit 
 Apply KVL to the circuit in figure: 

First-Order RL Transient (Step-Response) First-Order RL Transient (Step-Response) 
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 Apply Laplace Transform on both sides 

i(0) = 0   >> initial value of the current at t = 0 
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 Apply the inverse Laplace Transform technique to get the expression of 
the current i(t)  

 Apply the inverse Laplace Transform technique to get the expression of 
the current i(t)  
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First-Order RL Transient (Step-Response) First-Order RL Transient (Step-Response) 

 Use the partial fraction technique   Use the partial fraction technique  

L
Rs

A

s

A

L
Rss

L
V

sI





 21

][
)(

 Multiply both sides by  Multiply both sides by ).(
L

Rss 

L

R
AsAA

sA
L

RsA
L

V

.).(......

.).(

11

1

2

2





both sides Compare the coefficients 

R
VA 

1 R
VA 2

)
11

()(

L
RssR

V
sI




 So, the current in s-domain is given by:  So, the current in s-domain is given by: 

 Apply the inverse Laplace transform :  Apply the inverse Laplace transform : 
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The same as last lecture The same as last lecture 



18 First-Order RL Transient (Discharge) First-Order RL Transient (Discharge) 

 The RL circuit shown in Figure contains an 
initial current of   (V/R) 

 The Switch “S” is moved to position”2” at t=0 

 The same as before 
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 Apply Laplace Transform on both sides 

i(0) = V/R   >> initial value of the current at t = 0 
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First-Order RC Transient (Step-Response) First-Order RC Transient (Step-Response) 

o Assume the switch S is closed at t = 0 
o Apply  KVL to the series RC circuit shown: 
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 Apply Laplace Transform on both sides 

Vc(0) = 0   >> initial value of the voltage at t = 0 
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 Apply the inverse Laplace Transform technique to get the expression of 
the current i(t)  

 Apply the inverse Laplace Transform technique to get the expression of 
the current i(t)  
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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 

 The Switch “S” is closed at t=0 
 Applying KVL will produce the following 

Integro-Differential equation: 

 The Switch “S” is closed at t=0 
 Applying KVL will produce the following 

Integro-Differential equation: 
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 Apply Laplace Transform on both sides  Apply Laplace Transform on both sides 
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]1).([]1[
)(

2

LcL
Rss

L
V

cs
sLR

s
V

sI







 To convert this to time-domain, it will depend on the roots of the denominator 
which could be expressed as: 

 To convert this to time-domain, it will depend on the roots of the denominator 
which could be expressed as: 

(s-S1).(s-S2)  >>>>> similar to last lecture  (m-m1).(m-m2) 
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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 
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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 

 Apply Partial According to the values of the roots , we have 3 scenarios:  Apply Partial According to the values of the roots , we have 3 scenarios: 
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Second-Order RLC Transient (Step Response) Second-Order RLC Transient (Step Response) 
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RL Sinusoidal Transient RL Sinusoidal Transient 

R = 5 ohms, L = 0.01 H, Vm = 100 volts, ф = 0, ω = 500 R = 5 ohms, L = 0.01 H, Vm = 100 volts, ф = 0, ω = 500 
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 Apply Laplace Transform on both sides 

i(0) = 0   >> initial value of the current at t = 0 
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RL Sinusoidal Transient RL Sinusoidal Transient 
 Use Partial Fraction:  Use Partial Fraction: 
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 Use Inverse L.T.  Use Inverse L.T. 
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Check EXAMPLE 11–12 ,13  Miller Check EXAMPLE 11–12 ,13  Miller 26 

Examples Examples 

The capacitor of Figure 11–24(a) is uncharged. The 
switch is moved to position 1 for 10 ms, then to 
position 2, where it remains. 

The capacitor of Figure 11–24(a) is uncharged. The 
switch is moved to position 1 for 10 ms, then to 
position 2, where it remains. 

 Note that discharge is more rapid 
than charge since 
 Note that discharge is more rapid 
than charge since 


